

Bernd Felgentreff Mittelstr. 13 a

04205 Leipzig-Miltitz

Tel.: 0341 / 94 11 484

Fax: 0341 / 94 10 524 Funktel.: 0178 / 533 76 88

E-Mail: tbs@bernd-felgentreff.de web: www.bernd-felgentreff.de

Erfahrung aus Planung, Bau und Betrieb des Dollnsteiner Kalten, intelligenten Wärmenetzes

Technische Beratung für Systemtechnik 31 Jahre Erfahrung – in über 5000 Anwendungen

Seit 1990:

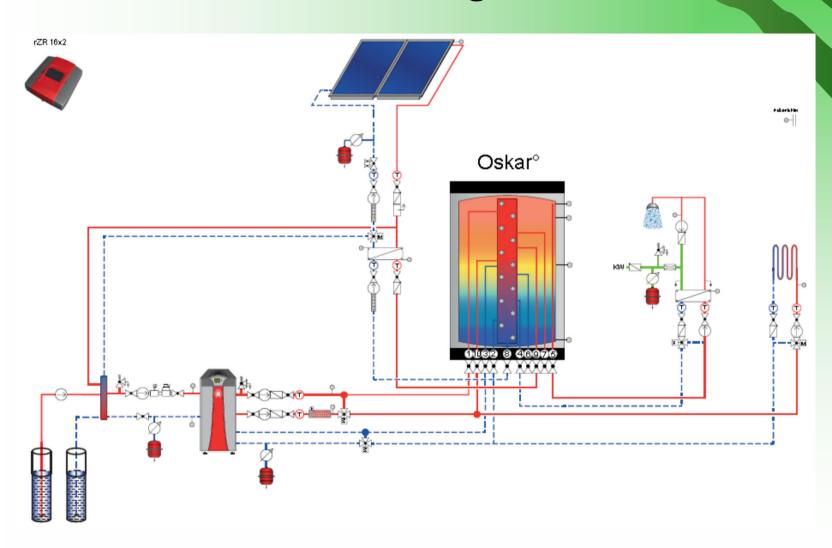
- Thermische und photoelektrische Solartechnik
 - Holzheiztechnik
 - Sensible Wärmespeicherung (kurz, mittel und saisonal)
 - · Latente Wärmespeicherung
 - Polyvalente Wärmeversorgung

- Seit 2001:
 - Pelletsheizungen
 - Hackschnitzelheizungen
 - Getreideheizungen
 - Solare Soleanhebung

Seit 1994:

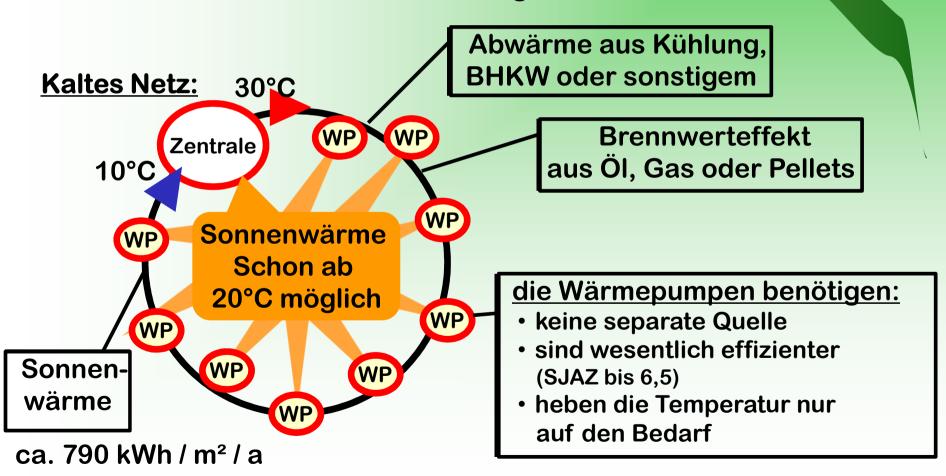
- Flächenheizungen (Fußboden, Decke, Wand)
 - Wärmepumpen (Erde, Wasser, Luft)
 - Gasmotor-Wärmepumpen

Seit 2015:


- Kalte, intelligente Wärmenetze
 - Vakuum-Flüssigeis-Technologie
 - Thermische Seewassernutzung
 - Transformation konv. Wärmeversorgung
 - Quartiersversorgung
 - · Wärme aus Kälte, Kälte aus Wärme

Seit 1998:

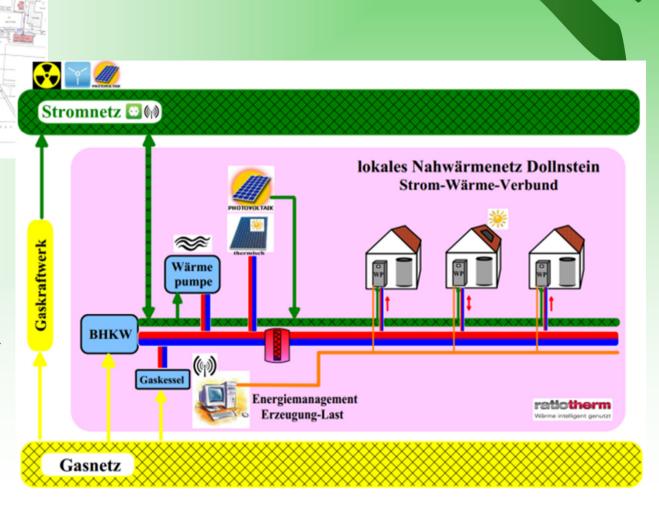
- Block-Heiz-Kraft
 - Absorptionsmaschinen


100% Decarbonisierung bis 2050!

Oskar^o - mit solarer Soleanhebung

Kalte, intelligente Wärmenetze

- Wärmeverluste drastisch reduziert
- Jegliche Art von Abwärme ist Nutzbar
- Die Zentrale ist nur noch der Manager



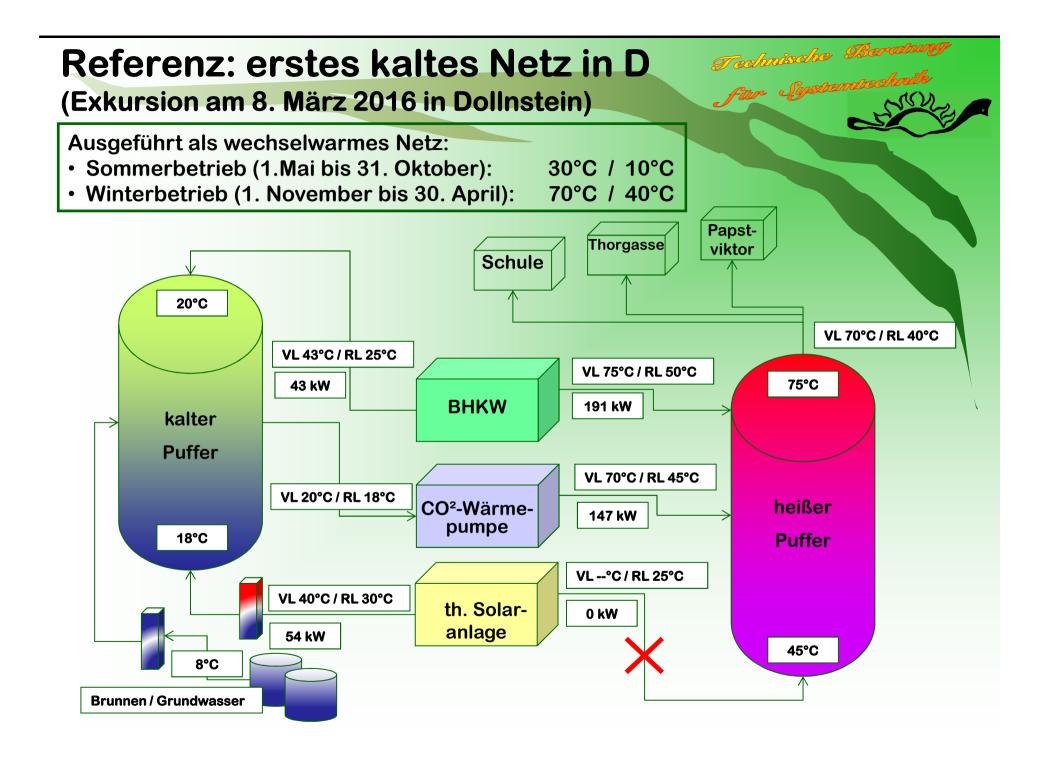
Nahwärmenetz Dollnstein gewinnt Bayrischen Energiepreis 2015

Netzparameter:

- >> 45 Anschlussteilnehmer
- 33 1.200 MWh/a Wärmebedarf (bei Vollbezug 1.750 MWh/a)
- 1.800 m Trassenlänge mit 666 kWh/(m a)
- >>> ca. 4.400 h/a NT-Netzbetrieb mit 30/10°C; ca. 3.460 h/a 70/40°C; ca. 1.000 h/a 80/50°C

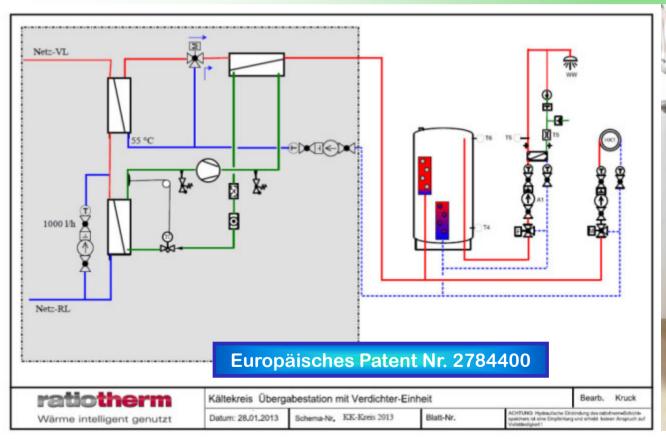
Referenzprojekt – Nahwärmenetz Dollnstein

(Anstalt öffentlichen Rechts)



Ausgangssituation:

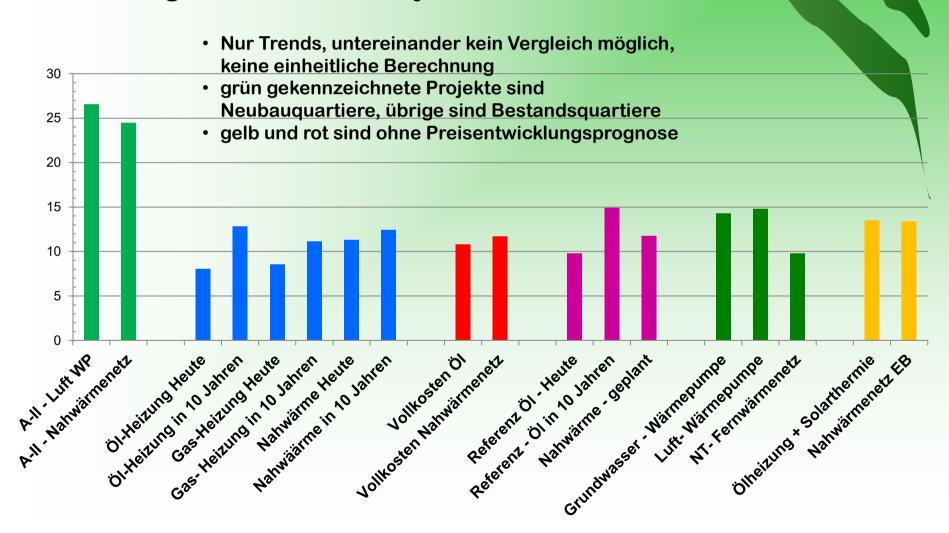
 Zentrale Wärmeversorgung des inneren Marktes


Aufgaben:

- Konzept Nahwärmeversorgung
- Ausführungsempfehlung Hydraulik und Komponenten
- Planung und Auslegung Hydraulik und Komponenten
- Planung Steuerungstechnik
- Projektbegleitung (-steuerung)
- Begleitendes Energiemanagement (Optimierungspotenziale identifizieren)
 Ergebnis:
- Akzeptanz: 47 von 52 Anwohnern

Übergabestation im kalten Netz

- für Kalte, intelligente Wärmenetze entwickelt
- · auch für den wechselwarmen Betrieb nutzbar
- Prosumenten-Netzwerk f\u00e4hig
- · Wetterprognose geführte Meß-, Steuer- und Regeltechnik



Wirtschaftliche Betrachtung Dollnstein

Vollkostenvergleiche in ct / kWh

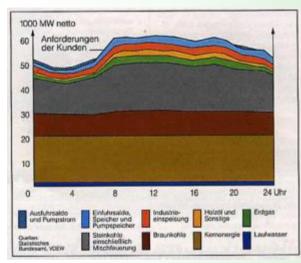
== 6 völlig verschiedene Projekte ==

Situation und Lösung

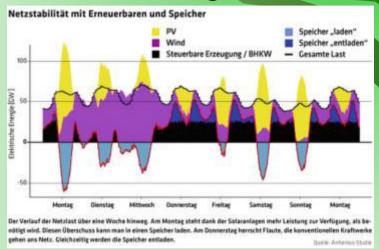
Situation im typischen Stadthaus:

- Ringsherum Nachbarn oder Straße
- · Kein Platz für:
 - Solartechnik
 - Erdwärmesonden
 - Pelletlager
- Energieeinsparung nicht durch Außendämmung möglich

Der Lösungsansatz:

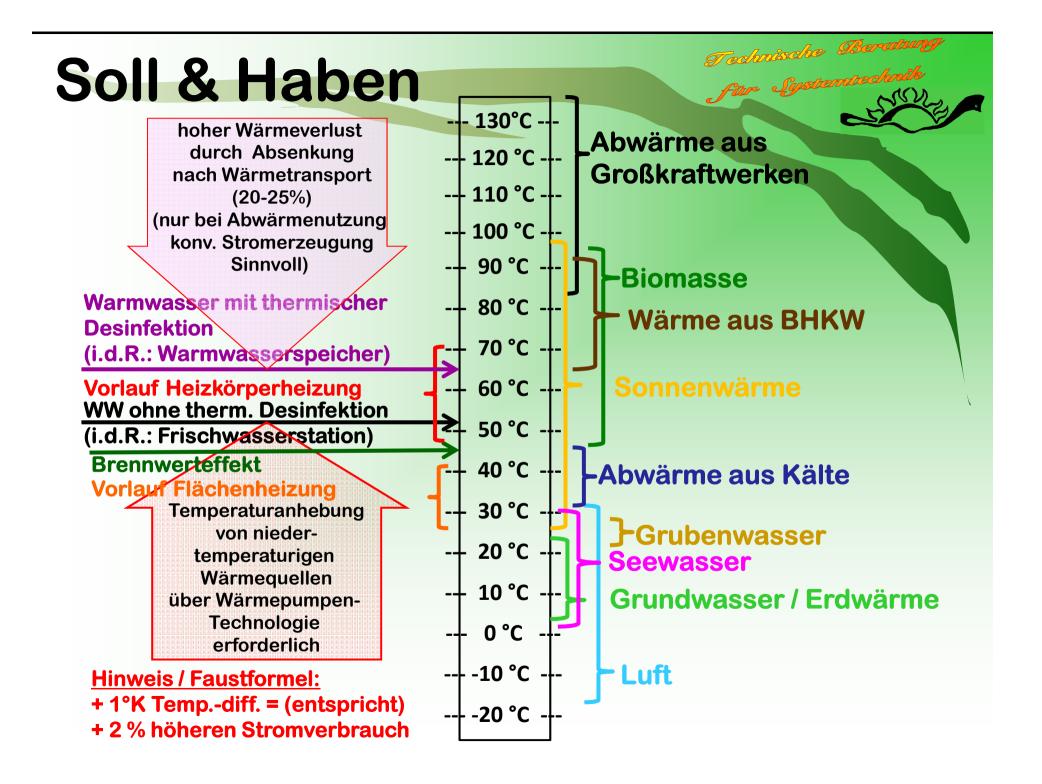

- Energieeinsparung durch moderne Reflexionsdämmung innen möglich
- Einbindung von Abwärmepotentialen
- Solartechnik von geeigneten Dächern
- Erdwärmesondenfelder von geeigneten Flächen
- Spitzenlasten aus Biomassen, wie Laub- oder Grünschnittpellets
- ...durch Kalte, intelligente Wärmenetze

Warum hybride Wärmenetze?


Technische Beratung für Systemtechnik

Stromerzeugung Gestern / bisher:

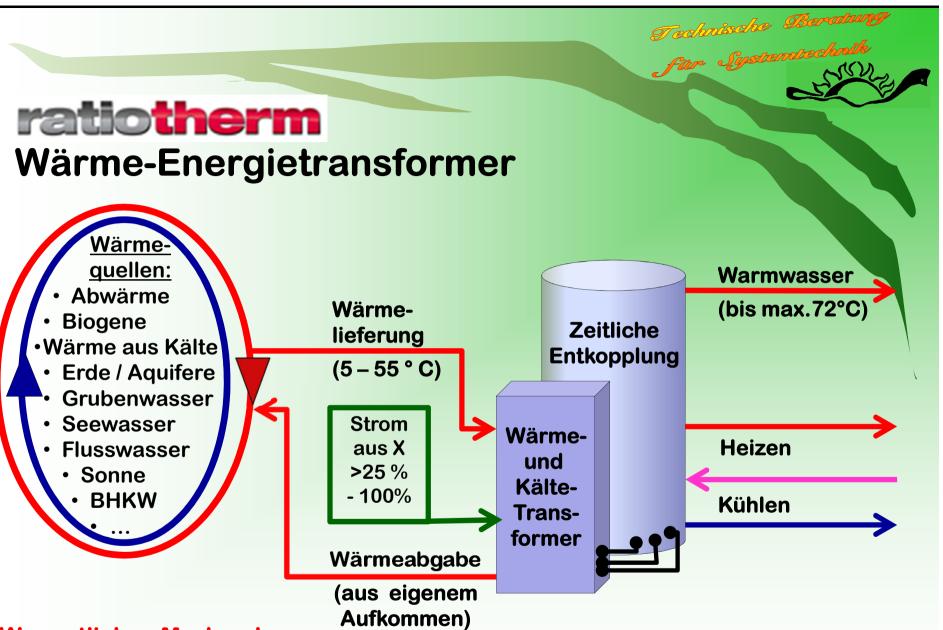
- Abwärme immer verfügbar
- hochtemparaturig (optimal)
- hohe Verluste (wenig relevant)
- •erneuerbare Wärmequellen praktisch ungeeignet
- Abschaltung nicht möglich/ nicht nötig


Heute / zukünftig:

- Grundlast aus PV und Wind
- •KWK nur noch Regelenergie
- Abwärme nicht ständig verfügbar
- Erneuerbare Wärmequellen zwingend erforderlich
- Optimierung / Abschaltung nötig u. möglich

Fazit / Konsequenzen:

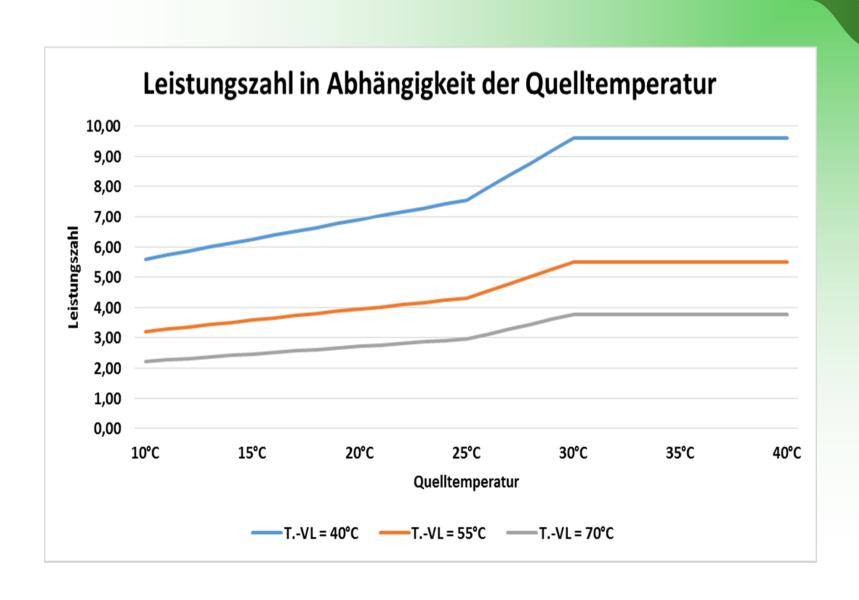
- Wärmenetze müssen für erneuerbare Wärmeträger offen sein
- · Wärmenetze müssen viel Kälter, viel intelligenter und abschaltbar sein
- Kalte, intelligente Wärmenetze machen niedertemperaturige Abwärmequellen nutzbar (größtes ungenutztes Potential in Deutschland!)



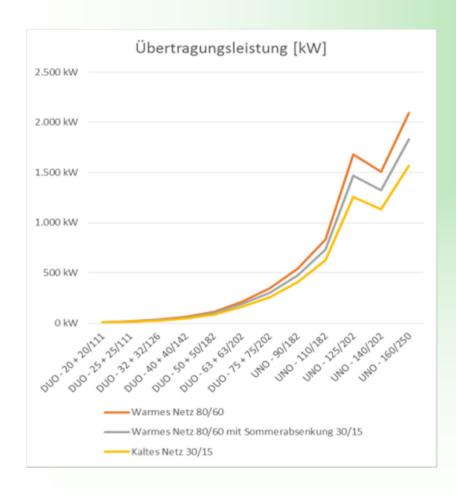
Mögliche Potentiale

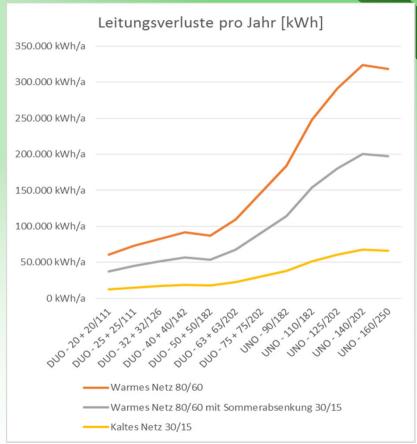
zur Nutzung in Kalten, intelligenten Wärmenetzen

Energiequelle	Bemerkungen
Abwärme aus Industrieprozessen	< 60°C bisher nicht genutzt
Abwärme aus Kühlung / Rückkühlung	93% bisher nicht genutzt
() Sonnonwarmo	bis zu 400% pro m² zur PV ; 200% besser als im EFH
	In
○ Erdwärme [★]	"heißen Wärmenetzen"
thermische Seewasser- / Grubenwassernutzung	nicht nutzbar
○ Kraft-Wärme-(Kälte)-Kopplung	alle Arten nutzbar
O Wärmeauskopplung aus Biogas	auch mit längeren Wegen
O Wärmenutzung aus Biomasse (Grünschnittpellets)	vor allem als Spitzenlast


* Auch als Langzeitspeicher nutzbar

Wesentliches Merkmal:


Die Quelle kann diskontinuierlich in Zeit und Temperatur zur Verfügung stehen


Wärmepumpe WP Max-HiQ

Unterschiedliche Wärmenetze Relation der übertragenen Leistung zu den Leistungsverlusten pro 1000 m

Modulierendes, und 2-stufiges Wärmepumpensystem

Quelltemperaturen zwischen 10°C und maximal 55°C für modulierende 1. Stufe

Übersicht Wärmenetze

Wärmenetz		typische '	Temperaturen	Betriebsweise	Medium	Rohrsystem
Тур	Untergruppe	Vorlauf	Rücklauf			
	Eisnetz	-1°C - 0°C	12°C	Ganzjährig,	Flüssigeis	konentionell,
Viihluna				bedarfsgerecht		isoliert
Kühlung	Kältenetz	6°C	12°C	Ganzjährig,	Wasser	konentionell,
				bedarfsgerecht		isoliert
	Quellnetz	6°C - 25°C	3°C - 6°C	Ganzjährig, abhängig	See-, Fluss	Kunststoff, ohne
				vom Temperatur-niveau	oder Gruben-	Isolation
				der Quelle	wasser	
kalte,	Wärmenetz für	25°C - 45°C	10°C - 20°C	Ganzjährig, Temperatur-	aufbereitetes	Kunststoff möglich,
intelli-	niedertemperaturige			führung abhängig von	Wasser	isoliert
gente	Abwärme			der Abwärmequelle		
Wärme-	wechselwarmes	Sommer: 25°C;	Sommer: 10°C;	gleitende Fahrweise,	aufbereitetes	Kunststoff möglich,
netze	Wärmenetz	Winter: 45°C	Winter: 25°C	bedarfsgerecht u. ziel-	Wasser	isoliert
				temperatur gesteuert		
	umschaltbares	Sommer: 30°C;	Sommer: 10 - 15°C;	Sommer-Winter	aufbereitetes	konentionell,
	Wärmenetz	Winter: 70°C	Winter: 30 - 40°C	Umschaltung	Wasser	isoliert
konven-	niedertemperaturige	Sommer: 70°C;	Sommer: 50°C;	Ganzjährig,	aufbereitetes	konentionell,
tionelle	Wärmenetze	Winter: 90°C	Winter: 70°C	nicht abschaltbar	Wasser	isoliert
Wärme-	hochtemperturige	Sommer: 90°C;	Sommer: 70°C;	Ganzjährig,	aufbereitetes	konentionell,
	Wärmenetze	Winter: 130°C	Winter: 90°C	nicht abschaltbar	Wasser	isoliert, hochdruck-
netze						beständig (15bar)

Quellnetze

Einsatzgebiet	kalte, intelligente Wärmenetze		
typisches Temperaturniveau			
Betriebsweise	Ganzjährig, abhängig vom Temperaturniveau der Quelle		
Medium	See- oder Flußwasser (alt. Sole)		
Rohrsystem	Kunststoff, ohne Isolation		
Anwendung	kleinere Netze von Oberflächengewässern (Seen, Flüsse), Grubenwasser und Abwasser; sowie mit Wärmeübertrager und Sole: Erdsonden, Erdkollektor oder Brunnenwasser		
Vorteile	kleinere Projekte mit kurzen Wegen (der Wärmeweg selbst gehört zur Wärmequelle) und, oder oder mit hohem sommerlichem Kühlbedarf		
technische Besonderheit	bei jedem Anrainer wird eine Wärmepumpe benötigt, die durch die Wärmequelle kosten- günstiger arbeitet als z.Bsp. Luftwärmepumpen; sehr gut geeignet zum heizen <u>und</u> kühlen		
ökonomische Besonderheit	mit besserem Nutzen als Erdwärmepumpen durch ganzjährig kontinuierlichere Quell- temperaturen. Zudem entfallen die aufwendigen Bohrungen für die einzelnen Erdsonden.		
ökologische Besonderheit	durch bessere Leistungszahl bessere Ökobilanz		
soziologische Besonderheit	Chance zur ökonomischen Decarbonisierung von kleinen Ortschaften oder Siedlungen an Flüssen und Seen; Interessant für eine Betriebsführung als Energiegenossenschaft		
Zukunftsfähigkeit	fähig, auf bis zu 100% Erneuerbare Energien transformiert zu werden		
Referenz	Lott in Achern (in Planung / Umsetzung)> Flusswasser Schlier (in Umsetzung)> Erdsonden		
	Weißenburg (in Planung)> Reinwasser aus Kläranlage		
	weitere im frühen Stadium		

Abwärme-Wärmenetz, niedertemperaturig

Einsatzgebiet	kalte, intelligente Wärmenetze	
typisches Temperaturniveau	Vorlauf: 25°C - 45°C Rücklauf: 10°C - 20°C	
Betriebsweise	Ganzjährig, Temperaturführung abhängig von der Abwärmequelle	
Medium	aufbereitetes Wasser	
Rohrsystem	Kunststoff möglich, isoliert	
Anwendung	Neubauquartiere als Anrainer von niedertemperaturiger Abwärme	
Vorteile	besonders Wirtschaftlich und zukunftsfähig, nahezu CO²-Emissions frei	
technische Besonderheit	die beim Anrainer benötigte Wärmepumpe arbeitet wesentlich effektiver mit deutlich	
	besseren Leistungszahlen als kalte Quellen	
ökonomische Besonderheit	t Nutzung bisher nicht genutzter Potentiale mit weitgehender Unabhänigkeit von	
	Energieimporten	
ökologische Besonderheit	besonders gute Ökobilanz durch Nachnutzung von sonst kaum nutzbarer Abwärme	
soziologische Besonderheit	Sektorübergreifend zwischen Industrie und Kommune	
Zukunftsfähigkeit	hohe Nachhaltigkeit	
Referenz	Meitingen	
	Kerpen Horrem (in Planung)> Grubenwasser Braunkohle-Tagebau	

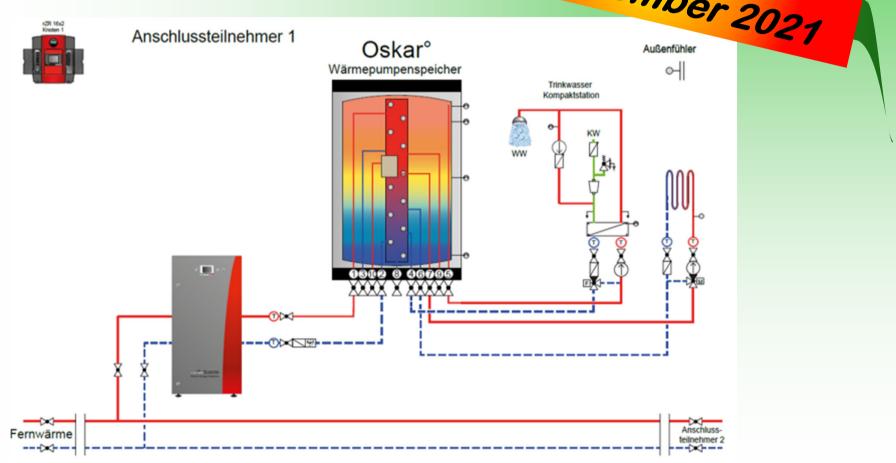
Einsatzbeispiel: Projekt Meitingen

Ausgangssituation:

- Industrielle Abwärme auf Niedertemperaturniveau bis zu 4,5 MW (bei 30°C)
- Erschließung angrenzendes Neubaugebiet

Aufgaben:

- KonzeptNahwärmeversorgung
- Machbarkeitsstudie
- Technische Komponentenauslegung
- Planungsunterstützung für weitere Umsetzungsschritte


Meitingen

Kombination von Wärmepumpe und Übergabestation

Technische Beratung

für Systemtechnik

Exkursion am: 18. November 2021

Wechselwarmes Wärmenetz

Einsatzgebiet	kalte, intelligente Wärmenetze		
typisches Temperaturniveau	Sommer: VL: 25°C - RL: 10°C Winter: VL: 45°C - RL: 25°C		
Betriebsweise	gleitende Fahrweise, bedarfsgerecht und zieltemperatur gesteuert		
Medium	aufbereitetes Wasser		
Rohrsystem	Kunststoff möglich, isoliert		
Anwendung	Neubauquartiere mit hohem Anteil Erneuerbarer Energieträger		
Vorteile	universell versorgbares Konzept mit hohem Nutzen und Zukunftssicherheit; Das Netz selbst kann zur Aufnahme von Regelenergie und als Puffer genutzt werden		
technische Besonderheit	die beim Anrainer benötigte Wärmepumpe muss nur die Temperatur auf das Niveau für die Warmwasserbereitung heben; sehr effektive Wärmeversorgung mit Leistungszahlen der Wärmepumpe bis zu dem Faktor 7. Vorteil bei z.B. MFH- oder Gewerbe-Quartieren o.ä. ist die Platzverschiebung, da die großen Heizlasten zentral gedeckt werden können und die WW-Versorgung mit kleinen WP oder Wohnungsstationen oder Durchlauferhitzern platzsparend je Gebäude abgewickelt werden können, gleichzeitig aber die Netzverluste eingespart werden.		
ökonomische Besonderheit	günstige Lösung zur energetischen Transformation der Energieversorgung gegenüber der Einzelhausversorgung; sehr vielfältige Nutzung von Synergien (ungenutzte Potentiale des Ortes)		
ökologische Besonderheit	Nutzung von Erneuerbarer Energie außerhalb des eigenen Grundstückes (Scheune am Ortsrand)		
soziologische Besonderheit	Sektorübergreifend zwischen Industrie, Gewerbe, Kommune und Bürgerschaft; Besonders geeignet für die Betriebsführung über eine Energiegenossenschaft		
Zukunftsfähigkeit	langfristige Versorgungssicherheit gegenüber Klimawandel, Energieimporten und dynamischer Gesetze		
Referenz	Haßfurt		
	Flehingen, Erweiterung im Bau		
	Kerpen, Vinger Weg (z.Z. im Probebetrieb)		
	Bedburg Kaster (in Planung / Umsetzung)> Abwasser-Wärmetauscher		

Einsatzbeispiel: Projekt Haßfurt

Aufgaben:

- Konzept Nahwärmeversorgung ("Kalt")
- Ausführungsempfehlung Hydraulik und Komponenten
- Planung und Auslegung Hydraulik und Komponenten
- Planung Regelkonzept
- Begleitendes Energiemanagement (laufende Optimierung)


Umschaltbares Wärmenetz

Einsatzgebiet	kalte, intelligente Wärmenetze		
typisches Temperaturniveau	Sommer: VL: 30°C - RL: 10-15°C Winter: VL: 70°C - RL: 30-40°C		
Betriebsweise	Sommer-Winter Umschaltung		
Medium	aufbereitetes Wasser		
Rohrsystem	Kunststoff auch möglich, sonst konventionell, immer isoliert		
Anwendung	zu sanierende Bestandsquartiere und, oder oder Wärmenetze mit hochexergetischen		
	Spitzenlasten (z.Bsp.: Hackschnitzel)		
Vorteile	entwickelt zur Transformation konventioneller Wärmenetze oder der Umstellung von Quartieren		
	mit Einzelheizungen auf eine decarbonisierte und ökonomische Wärmeversorgung		
technische Besonderheit	die in der Übergabestation enthaltene Wärmepumpe hebt im Bearfsfall die Teperaturen auf das		
	Soll und macht damit das Wärmenetz prosumenten-fähig, zum "Mitmachnetz". Wichtig:		
	Bindung des Netzes an "schlechtesten" Abnehmer entfällt durch den Bivalenzbetrieb mit der		
	Wärmepumpe		
ökonomische Besonderheit	günstige Lösung zur energetischen Transformation der Energieversorgung gegenüber der		
	Einzelhausversorgung; sehr vielfältige Nutzung von Synergien (ungenutzte Potentiale des Ortes)		
ökologische Besonderheit	Nutzung von Erneuerbarer Energie außerhalb des eigenen Grundstückes (Scheune oder		
	Biogasanlage am Ortsrand)		
soziologische Besonderheit	Sektorübergreifend zwischen Industrie, Gewerbe, Kommune und Bürgerschaft; Besonders		
	geeignet für die Betriebsführung über eine Energiegenossenschaft		
Zukunftsfähigkeit	besondere Chance für den Gebäudebestand, ökologisch und ökonomsch den technologischen		
	Wandel aus der fossilen Energieversorgung zu organisieren		
Referenz	Dollnstein		
	St.Georg-Leipzig (in Bau)		

Einsatzbeispiel: Projekt Bodenmais

Aufgaben:

- Konzept Nahwärmeversorgung
- Ausführungsempfehlung Hydraulik und Komponenten
- Planung und Auslegung Hydraulik und Komponenten
- Planung Regelkonzept
- Begleitendes Energiemanagement (Optimierungspotenziale identifizieren)

Kältenetze mit Flüssigeis

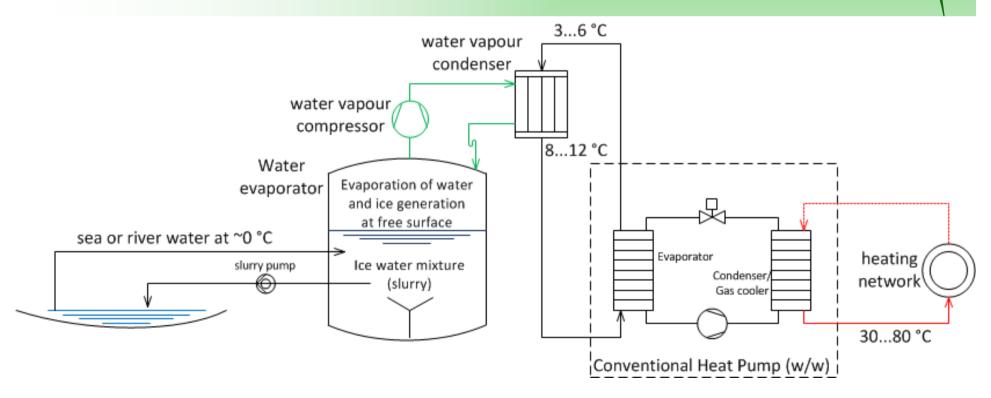
Einsatzgebiet	Kühlung	
typisches Temperaturniveau	Vorlauf: -1°C - 0°C Rücklauf: 12°C	
Betriebsweise	Ganzjährig, bedarfsgerecht	
Medium	Flüssigeis	
Rohrsystem	konventionell, isoliert	
Anwendung	Gewerbegebiete únd Innenstädte mit hohem Kühlbedarf	
Vorteile	wesentlich effizienter als die Summe vieler Einzelkälteanlagen	
technische Besonderheit	durch die Nutzung latender Wärme sehr große Kühl-leistung (Faktor 5-8 zum typischen Kältenetz); neues Geschäftsfeld für Stadtwerke	
ökonomische Besonderheit	Momentan aus Wirtschaftlich-keitsgründen nur in etwas größerer Anwendung (mind. 100 kW Kälteleistung) umsetzbar	
ökologische Besonderheit	arbeitet ohne Chemie (Kältemittel ist Wasser)	
soziologische Besonderheit	Betriebsübergreifende Nutzung - dadurch Kollektive Lösung von Klimaschutzaufgaben	
Zukunftsfähigkeit	erstmalig kann Kälte als Regelenergie durch die sehr hohe Speicher-fähigkeit von Flüssigeis bis zur saisonalen Speicherung eingesetzt werden	
Referenz	in Planung	

Heizen mit Vakuum-Flüssigeis

Technische Beratung

für Systemtechnik

Nutzung natürlicher oder künstlicher Wasserreservoire als Wärmequelle


Vorteile

Konstante Temperatur der Wärmequelle

Höhere Wärmequellentemperatur als bei Luftwärmepumpen

Vermeidung von Schallproblemen von Luftwärmepumpen

Geringere Investitionskosten gegenüber Erdwärme, keine Regenerierungsprobleme

Seewasser - Wärmeentzug

am Beispiel Zwenkauer See

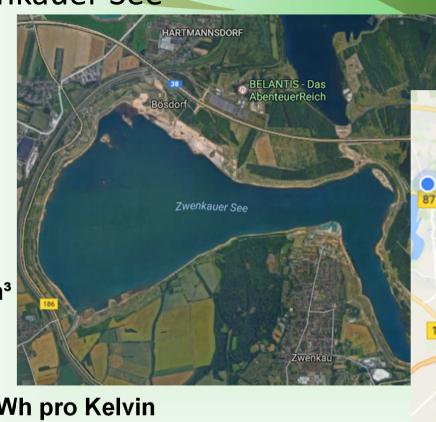
Fläche: 9,63 km² Umfang: 22,6 km (Uferlänge)

Tiefe: 17,7 m

Gesamtvolumen:

176.026.500 m³ 0,176 km³

Entzugsleistung:

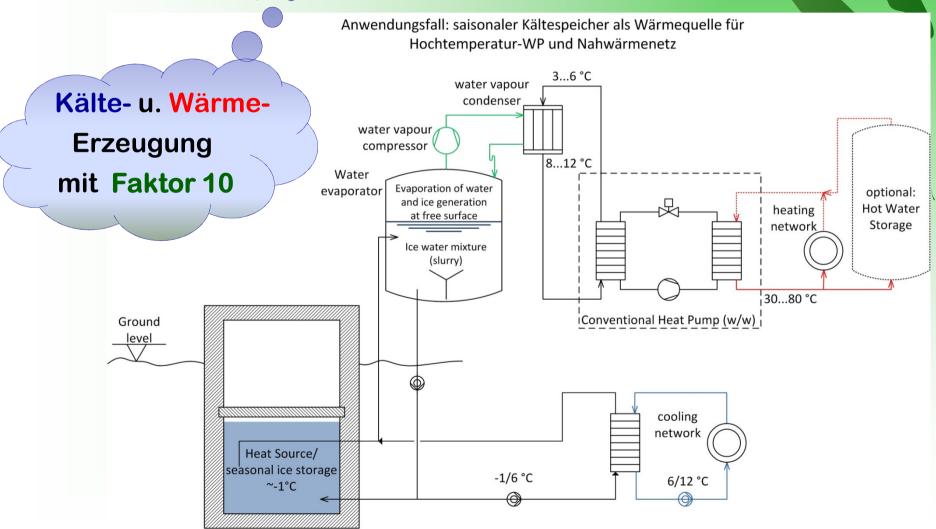

204.190.740 kWh pro Kelvin

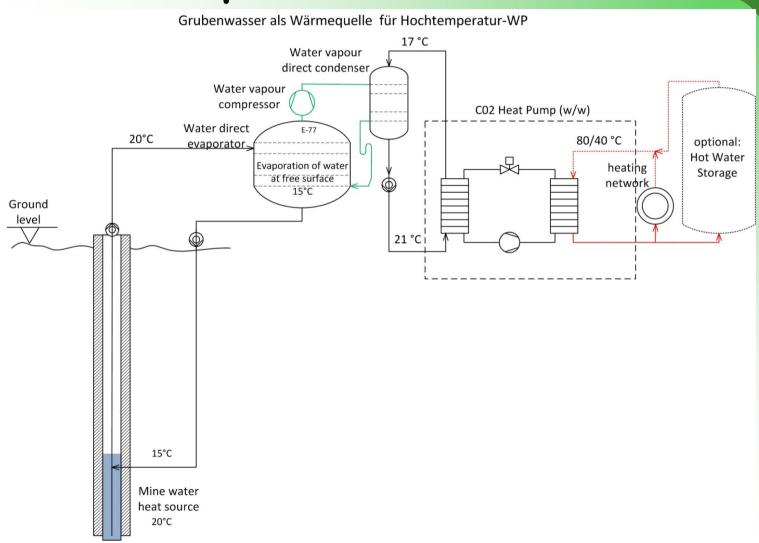
204,2 GWh pro Kelvin

Wärmenachfluß aus der Erde:

55,9 GWh pro Stunde/Kelvin (bei 5W/m²/9,63 km²)

Vergleich Einfamilienhaus: 0,015 - 0,035 GWh pro Jahr




Technische Beratung

Saisonaler Kältespeicher als Wärmequelle

Grubenwasser als Wärmequelle für HT WP

Altbergbau

Technische Beratung

für Systemtechnik

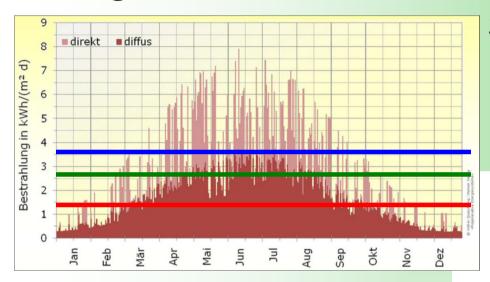
Altbergbau sind still gelegte Gruben.
Selbst die Kleinen haben selten Volumen unter 80.000 m³.

Mitteldeutschland (Sachsen, Thüringen und Sachsen-Anhalt)


sind weltweit der Raum mit dem dichtesten durch Menschen gemachten Hohlräumen (durch 800 Jahre Untertage-Bergbau).

Durch die Brüche vom 3.Reich zur DDR und zur Bundesrepublik gehören sie meistens niemandem.

Die Oberbergämter haben "Polizeirecht" und müssen jegliche Nachnutzung angezeigt bekommen.

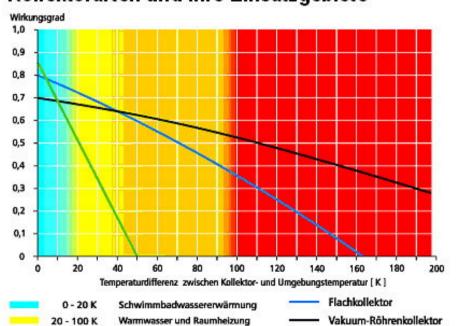


Einfluss der Zieltemperatur auf den Ertrag von Sonnenkollektoren

Fakt:

Der Jahresertrag von thermischen Solarkollektoranlagen verbessert sich kontraproportional zur Zieltemperatur des Transportsystems (Fernwärme).

Der Ertrag verschlechtert sich noch einmal in Abhängigkeit von der Rücklauftemperatur (Verbraucher).

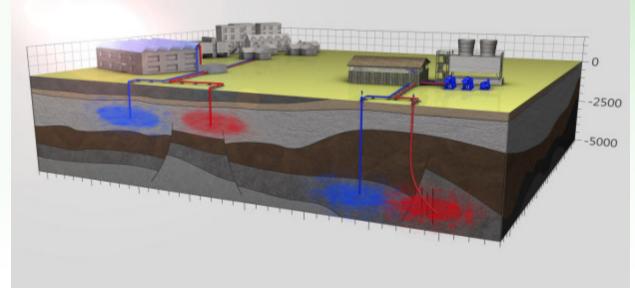

Zieltemperaturen

120°C → ca. 1.000 Betriebsstunde

80°C → ca. 1.500 Betriebsstunden

50°C → ca. 1.900 Betriebsstunden

Wirkungsgradkennlinien der verschiedenen Kollektorarten und ihre Einsatzgebiete


Schwimmbad-Absorber

Prozeßwärmeerzeugung

Aquifer-Wärmespeicher (Geogen)

Ein Aquifer-Wärmespeicher nutzt im Gegensatz zu einem Erdsonden-Wärmespeicher die Wärmekapazität von Wasser und Gestein eines natürlichen, nach oben und unten hydraulisch weitgehend dichten Grundwasserleiters.

Der Aquifer-Wärmespeicher wird wie eine geothermische Dublette über eine Förder- und eine Schluckbohrung erschlossen. Zur Beladung wird Wasser über eine der Bohrungen entnommen, in einem Wärmetauscher erwärmt und über die zweite Bohrung dem Aquifer wieder zugeführt. Dieser Vorgang wird im Entladebetrieb umgekehrt.

ungenutztes Potential: Gärrestelager

- Zentrale Herstellung von H₂ lässt die damit verbundene Abwärmenutzung in kleinen Orten nicht zu.
- Biogasanlagen gehören in diesem Zusammenhang zur "letzten Meile".
- Über Strom aus Biogas, Sonne oder (und) Wind in Verbindung mit dem ungenutzten Potentialen des Gärrestelagers (aller) Biogasanlagen, erzeugt die zur Nutzung benötigte Wärmepumpe eine 12-Fach höhere Nutzwärme.

Bisher ungenutztes Potential:

Technische Beratury

Niedertemperaturige Abwärme aus dem Gärrestelager: Bsp.: 40°C zur Außentemp. 10°C entspricht 30K * 5000m³ = 174 MWh

> Wärmepumpe 1,7 kWh bei SJAZ 6

Nutzwärme als Heizenergie

Bsp.: 10 kWh

Strom aus Sonne + Wind

Bsp.: 20 kWh

Thermische Nutzung von Wasserstoff
Herstellung + Transport + Lagerung
(Faktor 0,5)

Es gibt nichts Gutes, außer

- man tut es! (Erich Kästner)

Bernd Felgentreff Mittelstr. 13 a

04205 Leipzig-Miltitz

Tel.: 0341 / 94 11 484 Fax: 0341 / 94 10 524 Funktel.: 0178 / 533 76 88

E-Mail: tbs@bernd-felgentreff.de web: www.bernd-felgentreff.de

