

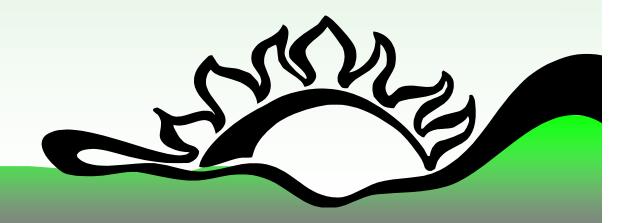
Der Glaube an die Unmöglichkeit des Vorhabens,

schützt die Berge vor dem Versetzt werden!

Bernd Felgentreff Mittelstr. 13 a

04205 Leipzig-Miltitz

Tel.: 0341 / 94 11 484 Fax: 0341 / 94 10 524


Funktel.: 0178 / 533 76 88

E-Mail: tbs@bernd-felgentreff.de

web: www.bernd-felgentreff.de

Wärmepumpe

Der goldene Schlüssel für ungenutzte Potentiale

Zukunft Wärme-Energieversorgung

CO₂-Emmision

Was wir Zukünftig nicht mehr nutzen wollen / können:

- Atom-Kraftwerk 37% / gefährlicher Abfall
- Kohle-Kraftwerk 45-40%
- Ölheizungen 70%
- Gas-Einzelheizungen 80%

Was wir bisher kaum oder noch gar nicht nutzen:

- See-, Talsperren u. Flusswasser
- Aquifere und Grubenwasser
- Abwärme aus Kühlung u. Industrieprozessen
- Grünschnittpellets, Gärreste, u.s.w.
- Ressourceneffizienz
- Wasserstofftechnologie

Technische Berotung

für Systemtechnik

18 Wärmequellen für Ihre Lösung mit ratiotherm Wärmepumpen

Sonne:

- Direkt zum Puffer,
- Indirekt über WP
 - ➤ Kombiniertüber PVT

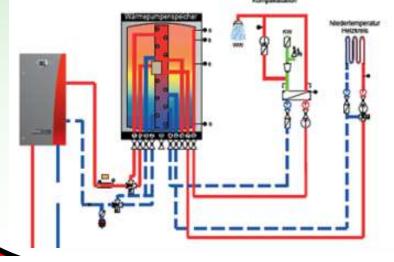
Wasser:

- > Brunnen
- Grubenwasser
- Grundwasser / Aquifere
- Seewasser / Flusswasser
- Rückkühlwerke
- Kälteerzeugung
- Kältespeicher

Erde:

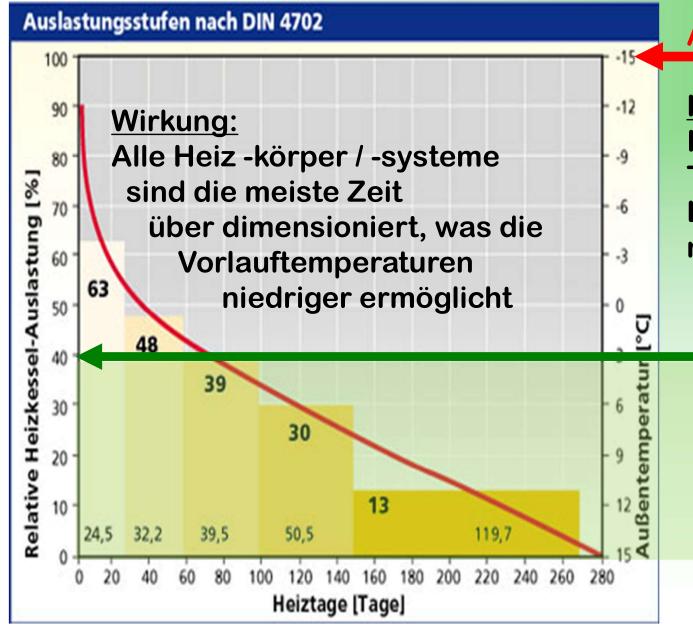
- Flächenabsorber
- Erdsonden

Luft:

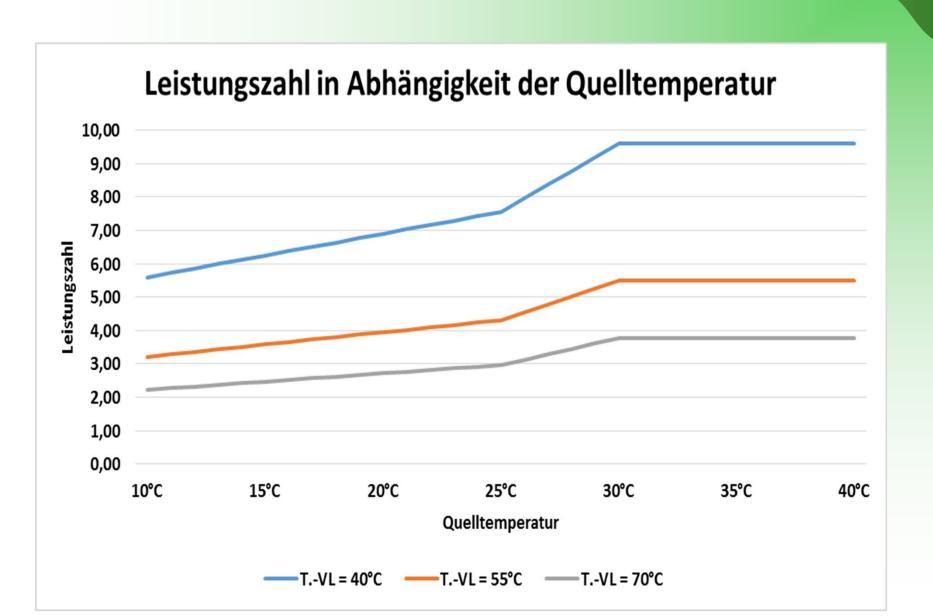

- > Rechenzentren
- > Absorber
- > Abluft

-15 bis +55°C

Feuer:


Abgaswärmerückgewinnung
plus
Kondensationswärme

Heizlast und Wärmebedarf


Auslegung

Hinweis: In den letzten 1000 Tagen hat es in Leipzig keine Stunde minus 14°C gegeben

Mit 40% der Heizlast versorgt man 65% des Wärmebedarfes

Wärmepumpe WP Max-HiQ

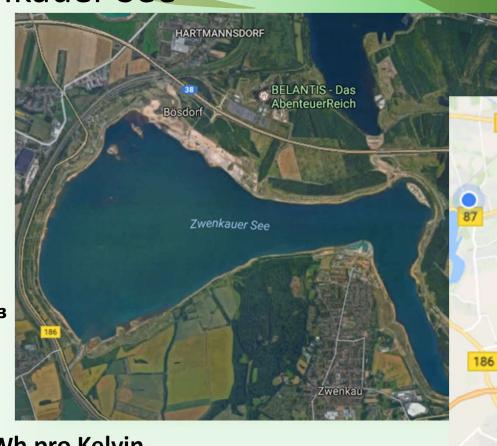
Seewasser - Wärmeentzug am Beispiel Zwenkauer See

Fläche: 9,63 km² Umfang: 22,6 km (Uferlänge)

Tiefe: 17,7 m Gesamtvolumen:

176.026.500 m³ 0,176 km³

Entzugsleistung:


204.190.740 kWh pro Kelvin

204,2 GWh pro Kelvin

Wärmenachfluß aus der Erde:

55,9 GWh pro Stunde/Kelvin (bei 5W/m²/9,63 km²)

Vergleich Einfamilienhaus: 0,015 - 0,035 **GWh pro Jahr**

Leipzig

Markkleeberg

PLAGWITZ

Zwenkau

Grünau

HARTMANNSDORF

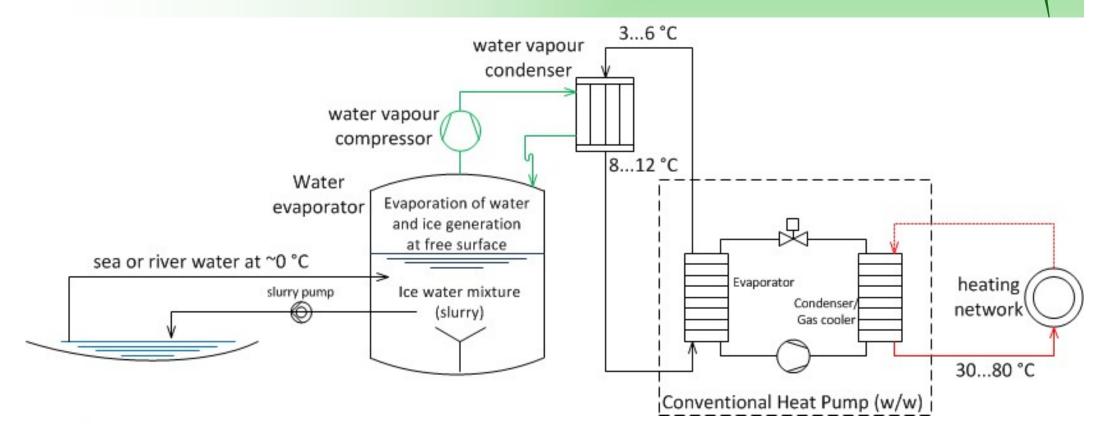
Bösdorf

Heizen mit Vakuum-Flüssigeis

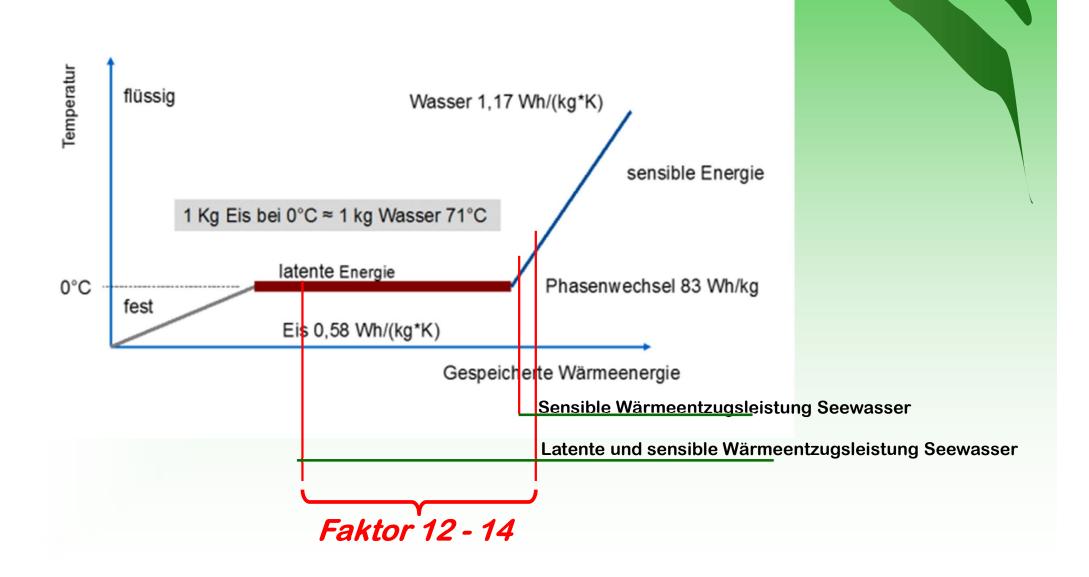
Technische Beratung

Gen Sustemtechnik

Nutzung natürlicher oder künstlicher Wasserreservoire als Wärmequelle

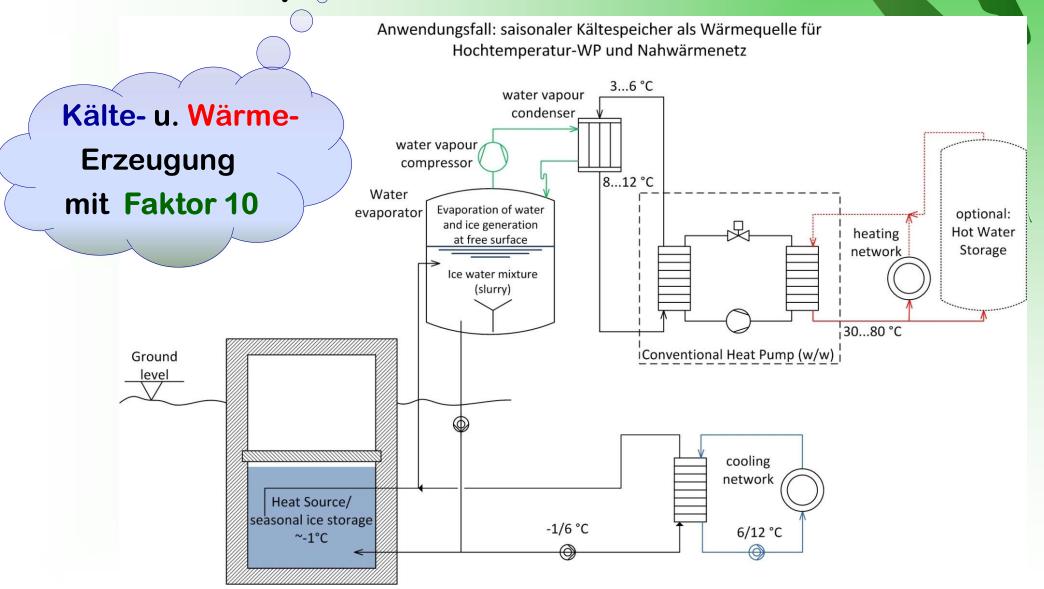

Vorteile

Konstante Temperatur der Wärmequelle


Höhere Wärmequellentemperatur als bei Luftwärmepumpen

Vermeidung von Schallproblemen von Luftwärmepumpen

Geringere Investitionskosten gegenüber Erdwärme, keine Regenerierungsprobleme



Wärmeentzug ohne und mit der latenten Wärme

Saisonaler Kältespeicher als Wärmequelle

Spundwandabsorber

Bilder von Beispielen aus den Niederlanden

Prinzip Abwärmenutzung Gestern und Morgen

bisher das
Problem:
passen selten
zusammen

- 1. zeitlich,
- 2. räumlich und
- 3. temperaturig

Aktuelle Lösung:

- 1. Zeitliche Entkopplung über saisonale Wärme- und Kältespeicher
- 2. Räumliche Verbindung über Kalte, intelligente Wärmenetze
- 3. Spitzenlastversorger für Redundanzen und Endstufen mit integrierter Wärmepumpe

Übersicht Wärmenetze

Wärmenetz		typische Temperaturen		Betriebsweise	Medium	Rohrsystem
Тур	Untergruppe	Vorlauf	Rücklauf			
Kühlung	Eisnetz	-1°C - 0°C	12°C	Ganzjährig,	Flüssigeis	konentionell,
				bedarfsgerecht		isoliert
	Kältenetz	6°C	12°C	Ganzjährig,	Wasser	konentionell,
				bedarfsgerecht		isoliert
	Quellnetz	6°C - 25°C	3°C - 6°C	Ganzjährig, abhängig	See-, Fluss	Kunststoff, ohne
kalte, intelli- gente Wärme- netze				vom Temperatur-niveau	oder Gruben-	Isolation
				der Quelle	wasser	
	Wärmenetz für	25°C - 45°C	10°C - 20°C	Ganzjährig, Temperatur-	aufbereitetes	Kunststoff möglich,
	niedertemperaturige			führung abhängig von	Wasser	isoliert
	Abwärme			der Abwärmequelle		
	wechselwarmes	Sommer: 25°C;	Sommer: 10°C;	gleitende Fahrweise,	aufbereitetes	Kunststoff möglich,
	Wärmenetz	Winter: 45°C	Winter: 25°C	bedarfsgerecht u. ziel-	Wasser	isoliert
				temperatur gesteuert		
	umschaltbares	Sommer: 30°C;	Sommer: 10 - 15°C;	Sommer-Winter	aufbereitetes	konentionell,
	Wärmenetz	Winter: 70°C	Winter: 30 - 40°C	Umschaltung	Wasser	isoliert
konven- tionelle Wärme- netze	niedertemperaturige	Sommer: 70°C;	Sommer: 50°C;	Ganzjährig,	aufbereitetes	konentionell,
	Wärmenetze	Winter: 90°C	Winter: 70°C	nicht abschaltbar	Wasser	isoliert
	hochtemperturige	Sommer: 90°C;	Sommer: 70°C;	Ganzjährig,	aufbereitetes	konentionell,
	Wärmenetze	Winter: 130°C	Winter: 90°C	nicht abschaltbar	Wasser	isoliert, hochdruck-
						beständig (15bar)

Kriterium: Belegungsdichte

Belegungsdichte	Eignung (2020-Standard)		Beispiele	
2000 kWh/lfd.m./a			Großstadtzentrum	
1900 kWh / lfd.m. / a				
1800 kWh/lfd.m./a	gut geeignet		Kleinstadt, kompakt	
1700 kWh / lfd.m. / a	gut geeignet			
1600 kWh/lfd.m./a	geeignet		Kleinstadt, wenig Mehrgeschossbau	
1500 kWh/lfd.m./a	goorgroot		Ort mit industrieller HT-Abwärme	
1400 kWh / lfd.m. / a	bedingt geeignet	ut		
1300 kWh / lfd.m. / a	Deamige georginee	_{sehr} gut geeignet	Ort mit Abwärme aus Biogasanlage	
1200 kWh / lfd.m. / a		se"net	Kleinstadt, weitläufig	
1100 kWh / lfd.m. / a		gee1911		
1000 kWh / lfd.m. / a		99	Ort mit industrieller NT-Abwärme	
900 kWh/lfd.m./a	-ianet			
800 kWh/lfd.m./a	ungeeignet		Ort mit kleinem Zentrum	
700 kWh/lfd.m./a	פיוט			
600 kWh/lfd.m./a			kompakter Ort	
500 kWh/lfd.m./a			Ort ohne Mehrgeschossbau	
400 kWh/lfd.m./a			30-er Jahre Siedlung	
300 kWh/lfd.m./a			Siedlung	
200 kWh/lfd.m./a			weitläufige Siedlung	
100 kWh/lfd.m./a			sehr weitläufiges Dorf	
	konventionelles Wärmenetz	Kaltes, intelligentes Wärmenetz		

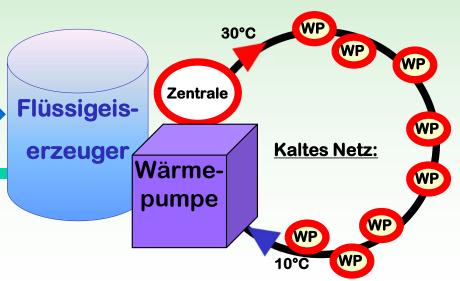
Verlustminimierung von Wärmenetzen – auch bei langen Wegen

Bisher:

Wärmeerzeuger 90°C - kurze Wege nötig

23 kWh/m3 / 25% Verlust

70°C - trotzdem hohe Verluste



Neue Möglichkeit:

Beliebige Energiequelle 12°C lange Wege möglich

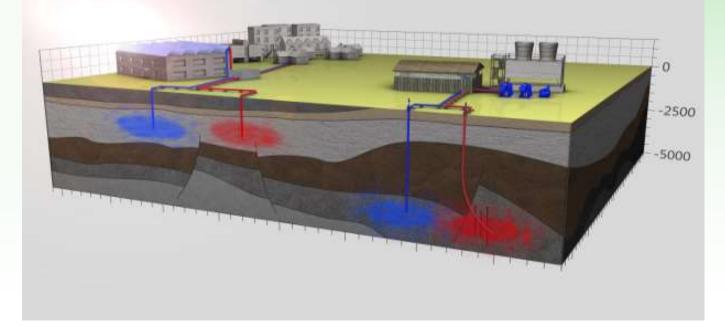
50kWh/m3 / 0%Verlust

0°C bei 40% Flüssigeis dadurch keine Verluste

Aquifere (Definitionen)

Aquifer, geogen (natürlichen Ursprungs):

Gesteinskörper, der geeignet ist, Grundwasser weiterzuleiten und abzugeben. Aquifere werden auch als Grundwasserleiter bezeichnet. Bei der Abgrenzung der Begriffe Aquiclude, Aqufuge, Aquitarde und Aquifer wird oftmals die Wirtschaftlichkeit des Gesteinskörpers hinsichtlich der Wasserergiebigkeit mit einbezogen. Aquifere sind dann solche Gesteinskörper, die Grundwasser in wirtschaftlich bedeutsamen Mengen liefern.

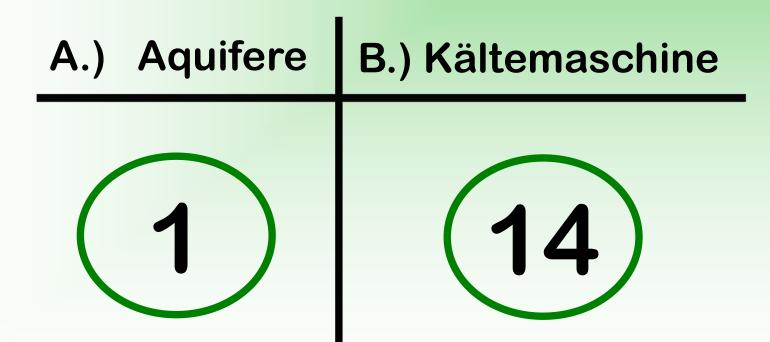

Aquifer, anthropogen (vom Menschen gemacht):

Hohlraum, hauptsächlich durch Untertage-Bergbau entstanden durch stillgelegte Untertagebergwerke. Altbergbau, im osten Deutschlands sehr oft ohne Rechtsnachfolger (Besitzerlos), von den Bergämtern polizeilich verwaltet (Anzeigepflicht für Nachnutzung). Unter verschiedenen Umständen (Langzeitbeständigkeit, Umweltverträglichkeit) als saisonaler Wärme- und oder Kältespeicher gut geeignet.

Aquifer-Wärmespeicher (Geogen)

Ein Aquifer-Wärmespeicher nutzt im Gegensatz zu einem Erdsonden-Wärmespeicher die Wärmekapazität von Wasser und Gestein eines natürlichen, nach oben und unten hydraulisch weitgehend dichten Grundwasserleiters.

Der Aquifer-Wärmespeicher wird wie eine geothermische Dublette über eine Förder- und eine Schluckbohrung erschlossen. Zur Beladung wird Wasser über eine der Bohrungen entnommen, in einem Wärmetauscher erwärmt und über die zweite Bohrung dem Aquifer wieder zugeführt. Dieser Vorgang wird im Entladebetrieb umgekehrt.


Technische Beratung

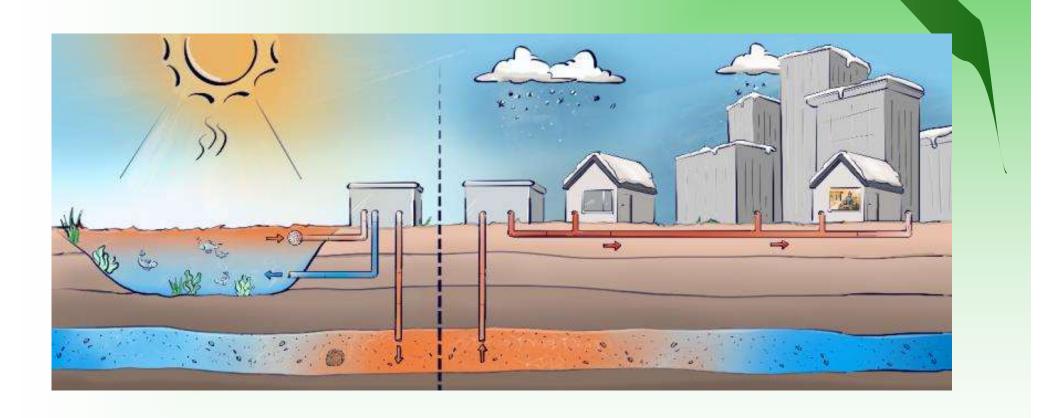
für Systemtechnik

Vergleich Aquifere contra konventionelle Kühlung

Frage:

Schätzen Sie bitte, wieviel Kilowattstunden elektrische Energie sind nötig, um 50 Kilowattstunden Raumkühlung bei 30-grädiger Außentemperatur zur Verfügung zu stellen?

Fur Systemtechnik


halt

Oberflächennahe Aquifere in Sachsen, Thüringen, Sachsen-Anhalt und Brandenburg

Aktuelles Beispiel aus Karlsruhe:

Aquifernutzung unter dem Uni-Klinikum 50 m mächtig entspricht einem Volumen von 500.000 m³/ha

Aquathermie Aquifere und Seethermie

Altbergbau

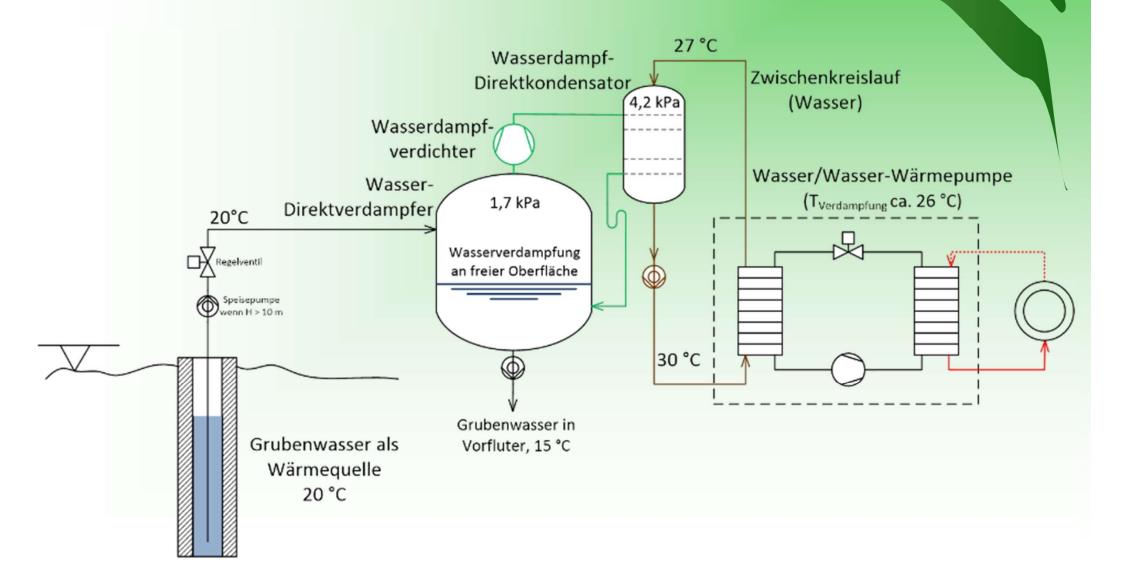
Technische Beratung
für Systemtechnik

Altbergbau sind still gelegte Gruben.
Selbst die Kleinen haben selten Volumen unter 80.000 m³.

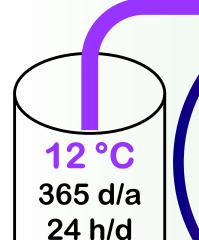
Mitteldeutschland (Sachsen. Thüringen und Sachsen-Anhalt)

sind weltweit der Raum mit dem dichtesten durch Menschen gemachten Hohlräumen (durch 800 Jahre Untertage-Bergbau).

Durch die Brüche vom 3.Reich zur DDR und zur Bundesrepublik gehören sie meistens niemandem.


Die Oberbergämter haben "Polizeirecht" und müssen jegliche Nachnutzung angezeigt bekommen.

Prinzip des Wärmeentzugs durch Direktverdampfung


Technische Beraturg

für Systemtechnik

Ewigkeitskosten mit Ewigkeitsnutzen

Die Idee: Dreifachnutzen

Freiheit III

333 m³/h/

Kühlen Chemiepark

Beispiel: 12°C – 32°C → 20K x 333m³ = 7700 kWh/h Kühlleistung →Ergibt ca. 1,5 MWh/h Stromersparnis Beheizen Wohngebiet

Beispiel:
32°C-8°C → 24K
x 333m³ = 9300 kWh/h
Heizleistung → Ersetzt mit
el. Aufwand von 1,9 MWh/h
bisherigen Verbrauch
von ca.1000 m³/h Erdgas

Mulde

Technische Beratung für Systemtechnik Wasserhaltung Permanenter **Zufluss**

Standortprüfung anthropogener Aquifere

(geflutete Untertage-Altbergbaue)

Langzeitbeständiger **Untertage-Altbergbau**

Ja Bsp.:

Schiefer, Kupfer, Uran, **kristalline Stoffe (bedingt)**

gut nutzbar

ungenügend nutzbar

Untertage

Braunkohlebergbau

Bsp.: Nein

stabile, ruhende Wasserhaltung

Bingo!

Wärme- und Kältespeicher

Kleinster Aquifer min. 80.000 m³ → 93 MWh / K Speicherkapazität

Bsp.: 15 K \rightarrow 1,4 GW

Doppelnutzen:

Sommerliche Kühlung (10°C Wasser statt 30°C Luft → Faktor 14)

Winterliches Heizen

(25 statt 10°C → ca. 35% weniger elektrischer Aufwand für WP)

"nur"

Wärmequelle

Typisch:

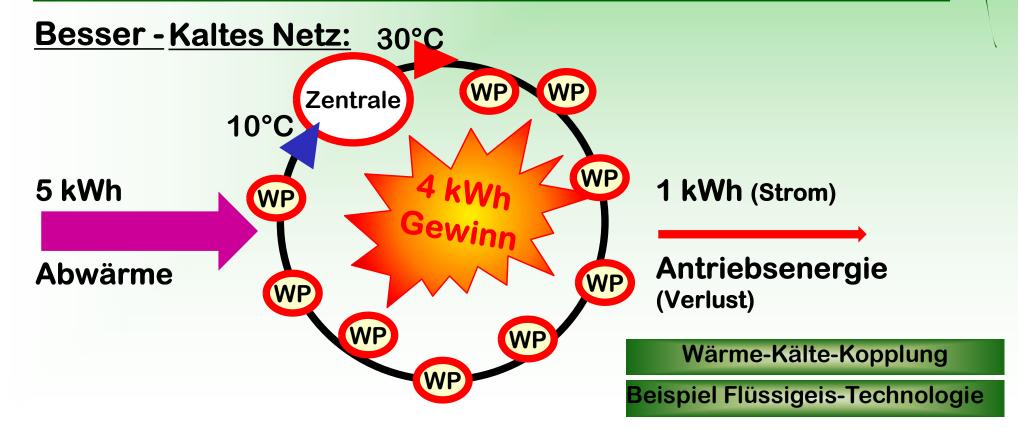
12-15 °C

 $5 \text{ K m}^3/\text{h} \rightarrow$

1 EFH

Ausnahme:

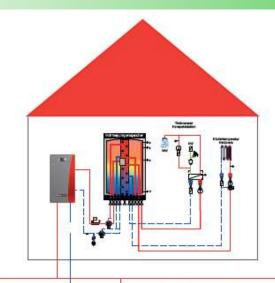
Bsp.: Freiheit 3

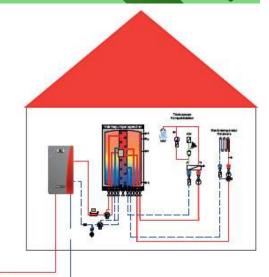

Technische Beratury

für Systemtechnik

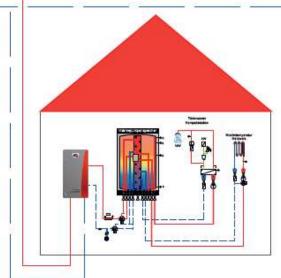
Warum Wärmerückgewinnung aus Kälteanlagen (16% des Stromverbrauches in D)

Bisher (Kompressoren):





Abwärme Rechenzentrum: Direkte Nutzung des Kühlkreislaufs



Verteilung via Nahwärme auf dezentrale Wärmepumpen

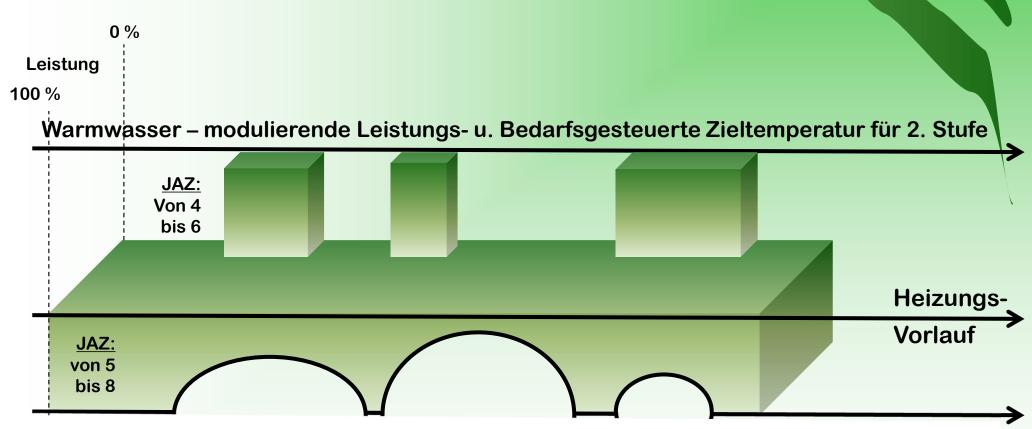
<u>Herausforderung:</u>

- -Kühl-Backup nötig
- -Sensitiver Bereich der IT Infrastruktur

Einsatzbeispiel: Projekt Meitingen

Ausgangssituation:

- Industrielle Abwärme auf Niedertemperaturniveau bis zu 4,5 MW (bei 30°C)
- Erschließung angrenzendes Neubaugebiet



Aufgaben:

- Konzept
 Nahwärmeversorgung
- Machbarkeitsstudie
- Technische
 Komponentenauslegung
- Planungsunterstützung für weitere Umsetzungsschritte

Technische Beratung Ein Sustemtechnik

Modulierendes, und 2-stufiges Wärmepumpensystem

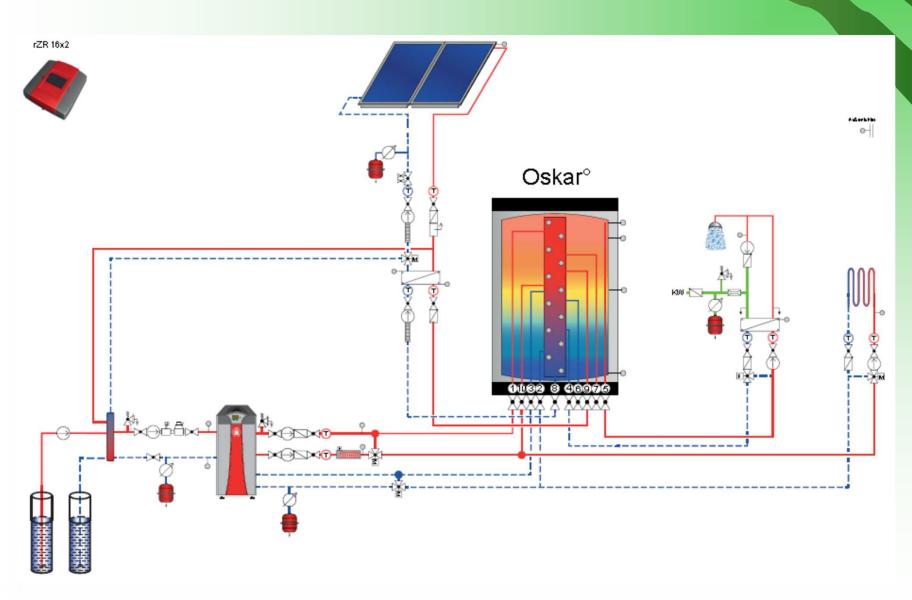
Quelltemperaturen zwischen 10°C und maximal 55°C für modulierende 1. Stufe

Über- und Unterschüssiger Solarertrag

Technische Beratung

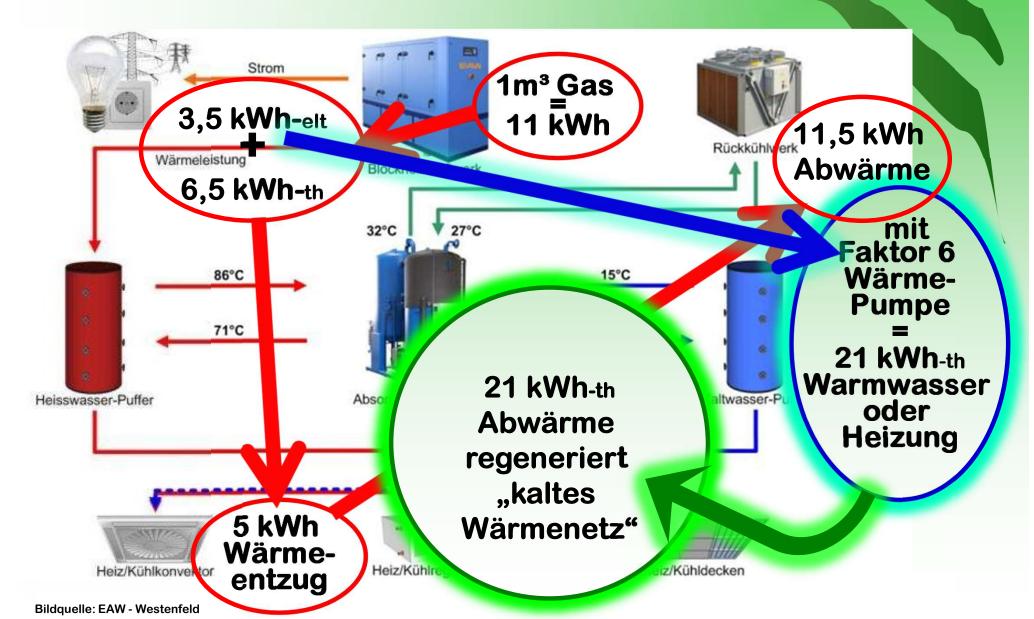
für Systemtechnik

SUL


Regelfunktionen:

Wenn: (A+8°K)>B=,,Pumpe an"

Wenn: B > 90° C = "Pumpe aus"


Oskar° - mit solarer Soleanhebung

Technische Berutung

Anlagenprinzip

Kraft-Wärme-Kälte-Abwärme-Kopplung

Technische Beraturg

für Systemtechnik

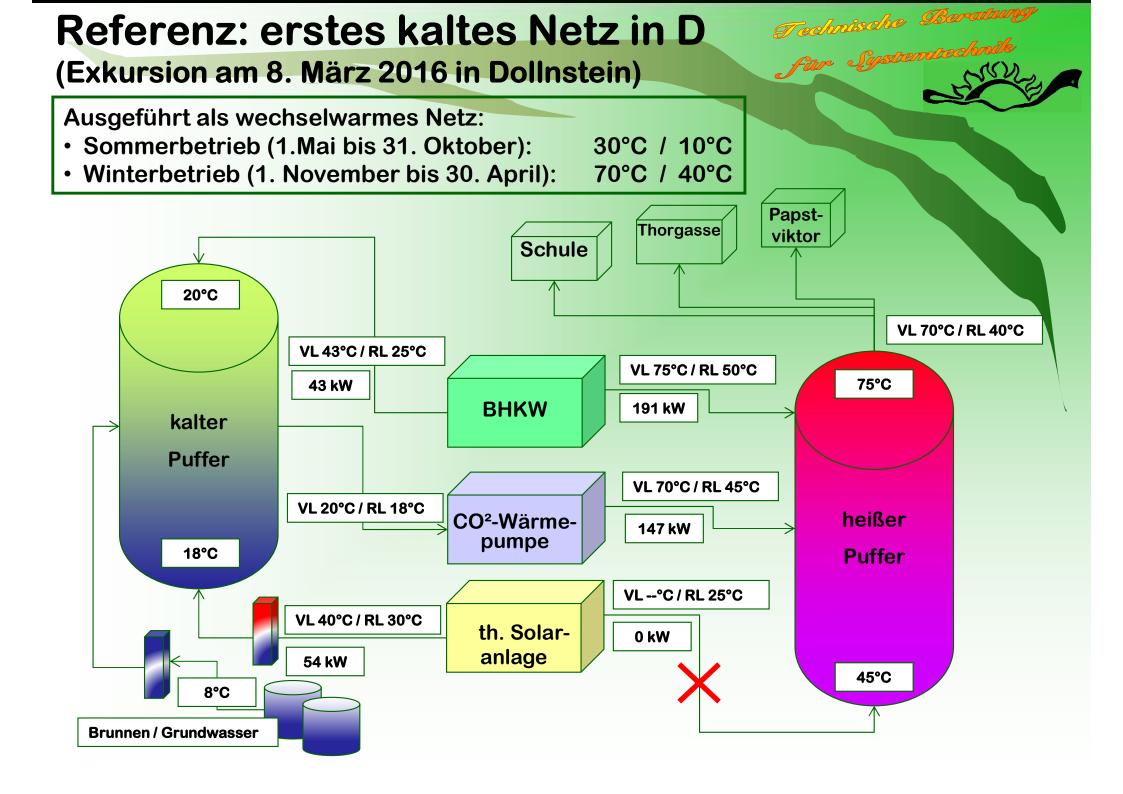
ungenutztes Potential: Gärrestelager

- Zentrale Herstellung von H₂ lässt die damit verbundene Abwärmenutzung in kleinen Orten nicht zu.
- Biogasanlagen gehören in diesem Zusammenhang zur "letzten Meile".
- Über Strom aus Biogas, Sonne oder (und) Wind in Verbindung mit dem ungenutzten Potentialen des Gärrestelagers (aller) Biogasanlagen, erzeugt die zur Nutzung benötigte Wärmepumpe eine 12-Fach höhere Nutzwärme.

Bisher ungenutztes Potential:

Niedertemperaturige Abwärme aus dem Gärrestelager: Bsp.: 40°C zur Außentemp. 10°C entspricht 30K * 5000m³ = 174 MWh

> Wärmepumpe 1,7 kWh bei SJAZ 6


Nutzwärme als Heizenergie

Bsp.: 10 kWh

Strom aus
Sonne + Wind

Bsp.: 20 kWh

Thermische Nutzung von Wasserstoff
Herstellung + Transport + Lagerung
(Faktor 0,5)

Power to Head (Strom zu Wärme) Warum ist PtH 1:1 zu hinterfragen?

- 70 Jahre Erfahrung aus der Schweiz
- Flächenverbrauch / Speicherfähigkeit
- "nördlich der Alpen"
- Exergieverschwendung

Besser: $1:2 \rightarrow Luft$

1:3 → Erde

1:4 → Wasser

1:5 → Abwasser

1:6 → Abwärme

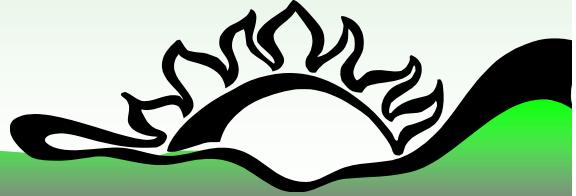
1:7 → Abwärme plus Flächenheizung

1:8 → Wärme- und Kältenutzng

Es gibt nichts Gutes, außer

- man tut es! (Erich Kästner)

Bernd Felgentreff Mittelstr. 13 a


04205 Leipzig-Miltitz

Tel.: 0341 / 94 11 484 Fax: 0341 / 94 10 524

Funktel.: 0178 / 533 76 88

E-Mail: tbs@bernd-felgentreff.de web: www.bernd-felgentreff.de

Vielen Dank.

